Язык Словесный и Математический. Природный смысл в Мировоззренческом контексте.Глас народа

Обсуждение альтернативных версий происхождения слов, лингвистических теорий, предложений по реформированию русского языка
Аватара пользователя
Автор темы
Правдоискатель
по чётным - академик
по чётным - академик
Всего сообщений: 1416
Зарегистрирован: 09.06.2022
Образование: высшее гуманитарное
 Язык Словесный и Математический. Природный смысл в Мировоззренческом контексте.

Сообщение Правдоискатель »

ЭПИГРАФ ТЕМЫ

Не то, что мните вы, природа:
Не слепок, не бездушный лик —
В ней есть душа, в ней есть свобода,
В ней есть любовь, в ней есть язык...


Ф. И. Тютчев


:muza:

Какими и сколькими вариантами можно словесно озвучить, используя отечественный лексикон, следующий знаковый ряд:
1,2,3,4,5,6,7

Какими различными словесными обозначениями (именами) можно обозначить каждый знак этого ряда и каждый из возможных рядов?

Чем по сути отличаются эти обозначения?

К какому жизненному процессу относится вышеобозначенный знаковый ряд?

Существует ли и какова связь чисел с системами счисления?

Существует ли связь Звукового Словесного ЯЗЫКА и ЯЗЫКА Математического, и если существует, то какова суть этой связи (взаимосвязи)?

:?:
Зри в КОРЕНЬ, чтобы БЫТЬ, а не КАЗАТЬСЯ!
Реклама
Аватара пользователя
Автор темы
Правдоискатель
по чётным - академик
по чётным - академик
Всего сообщений: 1416
Зарегистрирован: 09.06.2022
Образование: высшее гуманитарное
 Re: Язык Словесный и Математический

Сообщение Правдоискатель »

Памятуя о том, что имя Числительное бывает (как минимум) в двух вариантах - количественные и качественные, эти два ряда озвучиваются как:

Один, Два, Три, Четыре, Пять, Шесть, Семь

и

Первый, Второй, Третий, Четвёртый, Пятый, Шестой, Седьмой.

В первом варианте - это натуральный ряд Чисел?

Во втором - натуральный ряд Номеров?

Какие науки занимаются этими рядами?
Зри в КОРЕНЬ, чтобы БЫТЬ, а не КАЗАТЬСЯ!
daslex
Гениалиссимус
Гениалиссимус
Всего сообщений: 6567
Зарегистрирован: 07.02.2016
Образование: среднее
 Re: Язык Словесный и Математический

Сообщение daslex »

Так-то, строго технически, не натуральный ряд чисел, а ряд натуральных чисел. Это не особо важно, но отличие таки есть. Если говорить о ряде, то "натуральный ряд чисел" = тавтология: само понятие натурального ряда уже подразумевает, что этот ряд — это ряд из натуральных чисел, поэтому либо "натуральный ряд", либо "ряд натуральных чисел".

Вариантов неизвестно много, с появлением любой новой дисциплины или любой новой области в конкретной дисциплине, количество вариантов может увеличиваться.


Там есть ещё условные необозначенные и непризнаваемые современным русским языком ряды, как-то:
  • собирательный ряд: один, двое, трое... одинадцатеро... четырнадцатеро... сто сорок пятеро
  • автомобильный ряд: однёрка, двойка, тройка ... четырка, пятнашка
  • квартирный ряд: однушка, двушка, трёшка, четырёшка, пятерёшка
  • количественно-разовый ряд: единожды, дважды, трижды, четырожды, пятирожды
  • школьно-оценочный ряд (может зависеть от кокретной школы): кол, пара, тройбан, четвертюня, пятёра... семёра
  • ряд многоформ: однозначный, двоякий, троякий, четвероякий, пятиякий
  • могут быть ещё какие-нибудь
Кто именно ими занимается? Есть такие ряды, которыми никто, а другими разные дисциплины. Тут лучше конкретизировать, занимаются каким именно направлением?
Образование среднее-низшее.
Аватара пользователя
Автор темы
Правдоискатель
по чётным - академик
по чётным - академик
Всего сообщений: 1416
Зарегистрирован: 09.06.2022
Образование: высшее гуманитарное
 Re: Язык Словесный и Математический

Сообщение Правдоискатель »

«строго технически, не натуральный ряд чисел, а ряд натуральных чисел. Это не особо важно, но отличие таки есть. Если говорить о ряде, то "натуральный ряд чисел" = тавтология: само понятие натурального ряда уже ПОДРАЗУМЕВАЕТ, что этот ряд — это ряд из натуральных чисел, поэтому либо "натуральный ряд", либо "ряд натуральных чисел".

Это если принимать Искусственные Правила (игры) со-временной лингвистики, когда живые (естественные) СЛОВА обычно употребляют как искусственные (противоестественные) ТЕРМИНЫ.
А По-русски (а не на современном ментально-терминологическом российском лексиконе) это ЗВУЧИТ, а потому и Правильно ПОНИМАЕТСЯ как:

ПРИРОДНЫЙ РЯД ЧИСЕЛ

Из чего естественным образом следует, что этот РЯД принадлежит ТВОРЦУ и ПРИРОДЕ, выстроен по Вселенским Мироустроительным Канонам, а не выдуман земными яйцеголовыми МУДрецами.

И ЧИСЛА в Этом ряду тоже исключительно ПРИРОДНЫЕ, что является настольно само собой разумеющимся, что определение ПРИРОДНЫХ не стоит перед словом ЧИСЕЛ (во избежание пресловутой и т.н. тавтологии).

«само понятие натурального ряда уже ПОДРАЗУМЕВАЕТ, что этот ряд — это ряд из натуральных чисел»

Вообще-то – каждый, излагая своё (чужое) мнение «подразумевает» своё (чужое) понимание – в меру своей (чужой) продвинутости (или испорченности), а главное – в зависимости от используемого МИРОВОЗЗРЕНИЯ.

«Кто именно ими занимается? Есть такие ряды, которыми никто, а другими разные дисциплины. Тут лучше конкретизировать, занимаются каким именно направлением?»

Ежу понятно, что Природным (т.н. натуральным) рядом Номеров (НУМЕРов) занимается соотвественно и естественно НУМЕРо-ЛОГИЯ.

Природным (т.н. натуральным) рядом ЧИСЕЛ должна заниматься соответственно – ЧИСЛО-Логия (по т.н. числологии и числоведению есть публикации в мировой паутине на уровне художественной самодеятельности).
На деле этот ряд приватизировала современная математика, выхолостив это понятие до его сугубо КОЛИЧЕСТВЕННОЙ составляющей и выбросив самое главную его суть и душу – КАЧЕСТВЕННУЮ составляющую.
Вот характерные определения (т.н. дефиниции):

«ЧИСЛО́ — одно из основных понятий математики, используемое для КОЛИЧЕСТВЕННОЙ характеристики, сравнения, нумерации объектов и их частей.»
«ЧИСЛО абстрактное, лишенное особенного содержания обозначение какого-либо члена некоторого ряда, в котором этому члену предшествует или следует за ним какой-нибудь др. определенный член…»


Почему баранов считают по головам, а счёт в академической научной общественности ведётся по членам?  :) :wink:
Зри в КОРЕНЬ, чтобы БЫТЬ, а не КАЗАТЬСЯ!
daslex
Гениалиссимус
Гениалиссимус
Всего сообщений: 6567
Зарегистрирован: 07.02.2016
Образование: среднее
 Re: Язык Словесный и Математический

Сообщение daslex »

Предлагаю не чудить, ничего хорошего из этого не выйдет. Числа — это абстракция, придуманная человеком, соответственно, понятие "природный ряд" как" ряд чисел" — нелепое.
Образование среднее-низшее.
Аватара пользователя
Автор темы
Правдоискатель
по чётным - академик
по чётным - академик
Всего сообщений: 1416
Зарегистрирован: 09.06.2022
Образование: высшее гуманитарное
 Re: Язык Словесный и Математический

Сообщение Правдоискатель »

daslex: 19 окт 2022, 11:22 Предлагаю не чудить
ЧУДИТЬ всегда, ЧУДИТЬ везде!!
Чем чУднее, тем лучше!!!
:Yahoo!:
Зри в КОРЕНЬ, чтобы БЫТЬ, а не КАЗАТЬСЯ!
Аватара пользователя
Автор темы
Правдоискатель
по чётным - академик
по чётным - академик
Всего сообщений: 1416
Зарегистрирован: 09.06.2022
Образование: высшее гуманитарное
 Re: Язык Словесный и Математический

Сообщение Правдоискатель »

ЧИСЛО – понятие до сих пор НЕОПРЕДЕЛИМОЕ

Многочисленные попытки определить «число» к особому успеху не приводили.

Число – основное понятие математики, абстрагировавшееся в ходе длительного исторического развития человечества. МНОГОЧИСЛЕННЫЕ ПОПЫТКИ ОПРЕДЕЛИТЬ «ЧИСЛО» К ОСОБОМУ УСПЕХУ НЕ ПРИВОДИЛИ. Мы также не ставим своей целью определить это понятие. Мы только подчеркиваем, что для этой цели необходимо осуществлять длительные разъяснения. Мы ставим своей целью дать некоторый ответ на вопрос: Как складывается в сознании человека понятие бесконечности натуральных чисел?
«Мы часто просто не отдаем себе отчет в том, насколько сложную процедуру представляет счет. На первый взгляд, – пишет Леви Конант, – кажется совершенно немыслимым, чтобы какое-то человеческое существо могло быть лишено способности считать дальше двух. Однако на самом деле это вполне возможно: известно несколько языков, в которых вообще отсутствуют числительные.
Счёт – это достижение достаточно развитой цивилизации, и способность к счету не является врожденной ни для людей, ни для животных.
Тем более удивительно, что человек, а также некоторые птицы и насекомые обладают определенным «чувством числа», позволяющим им оценивать размер совокупности, содержащей не более четырех - пяти объектов, не прибегая к счету.
Лихтенберг давал своему соловью три червяка в день, каждый раз по одному, и обнаружил, что после третьего червяка соловей «понимал», что его больше кормить не будут. Способность замечать разницу между тремя и четырьмя, но не между четырьмя и пятью, проявляют вороны, а осы обладают необъяснимой способностью чувствовать, какое число личинок выделяют они на питание своему потомству.
Однако Умный Ганс – лошадь, умеющая считать – такой способностью не обладал.» (Д. Мичи, Р. Джонстон. Компьютер творец, Мир, М.: 1987, с. 10).
Зри в КОРЕНЬ, чтобы БЫТЬ, а не КАЗАТЬСЯ!
Аватара пользователя
Джонни
ВПЗР
ВПЗР
Всего сообщений: 2347
Зарегистрирован: 15.04.2012
Образование: высшее гуманитарное (филологическое)
Профессия: Преподаватель
Откуда: СССР
Возраст: 60
 Re: Язык Словесный и Математический

Сообщение Джонни »

Число...
Ритм...
Да ну...
Сказал некто спустя пару ударов отсутствующего сЕрдца...
И подумал: "А зачем так уж нужно писать первую Т в причастии, если в нём слышится Ц?"...

Отправлено спустя 2 минуты 16 секунд:
Грамотная каша хуже вкусной.
Аватара пользователя
Автор темы
Правдоискатель
по чётным - академик
по чётным - академик
Всего сообщений: 1416
Зарегистрирован: 09.06.2022
Образование: высшее гуманитарное
 Re: Язык Словесный и Математический

Сообщение Правдоискатель »

В.И. Даль ЧИСЛО

ср. количество, счетом, на вопрос: сколько? и самый знак, выражающий количество, цифра. Без числа; нетчисла, без счету, многое множество. Поставь приборы, по числу гостей. Числа римские, арабские илицерковные. Целое число, •противоп. дробь. Четное число, что делится на два без дроби. Круглым числом,средним. Число месяца, день, по счету, счетом, начиная с первого до 31-го. Татарове реша: дайте нам число,•стар. счет населенью, перепись народа. Не с числа говоришь, вят., пермяц. неверно, ошибочно, неправду.Число в число на тот месяц. Книга Чисел, четвертая из пяти книг Моисеевых: счисленье еврейского народа,станов и колен его, в пустыне. Занятия расписаны по числам (месяца). Все числом да счетом. В том числе, всем счету, в общем количестве. Числовой вывод, в числах, в цифрах, количественный. Числить что,исчислять, считать, рассчитывать,
| считать в числе чего, полагать в счет. Его числят, он числится в полку. Вычислить путь планеты.Дочислиться до вывода. Зачислить кого на службу. Исчислить нужды свои. Начислить на кого долг. Отчислятьчасть доходов в запас. Почислить дело решенным. Перечислить кого в другое ведомство. Он причислен кминистерству. Прочислил одну статью, пропустил. Расчислить, почем придется на брата. Арифметикисчисляют мудреные задачи. Численье, действие по гл. Численные величины, алг. означенные не буквами, ачислами. - люди, •стар. податные, окладные. Численник •стар. счетчик, переписчик народа русского, от татар.Говори численно, вят. порядком, правильно, законно, верно. Численность, число, счет чего, количество.Численность населенья все растет. Числитель муж. числящий, исчисляющий что.
| Числитель, верхня цифра дроби, означающая, сколько частей взято от целого, разделенного на столькочастей, сколько единиц в знаменателе. Числительный, к числителю относящийся; указывающий число чеголибо. - имя, грам. слово, означающее счет. Численка жен., тамб., тул. чисменка ниж., пермяц., олон.чисменница костр. в мотке ниток, и в основе ткацкой, зубок; три нитки; десять численок одна пасма; ниж.,костр. чисменка четыре нитки или два гнезда; вологод. 20 чисменок, по 3 оборота, одна пасма; местами 40чисменок пасма, в 120 ниток. Числовед или числослов, арифметик, счетчик. Числословная, числоведнаянаука, числоведенье, числословие, арифметика, математика, счетная наука.

Толковый словарь Даля. В.И. Даль. 1863-1866.
Зри в КОРЕНЬ, чтобы БЫТЬ, а не КАЗАТЬСЯ!
Аватара пользователя
Автор темы
Правдоискатель
по чётным - академик
по чётным - академик
Всего сообщений: 1416
Зарегистрирован: 09.06.2022
Образование: высшее гуманитарное
 Re: Язык Словесный и Математический

Сообщение Правдоискатель »

Значение слова НОМЕР в Словаре Даля

НОМЕР
нумер муж. числительный знак, число, счетная цифра. Все деловые бумаги идут за номером. Дом, за номером 58. Для показания, что цифра означает этот счет, принят знак N или ь.
Зри в КОРЕНЬ, чтобы БЫТЬ, а не КАЗАТЬСЯ!
Аватара пользователя
Автор темы
Правдоискатель
по чётным - академик
по чётным - академик
Всего сообщений: 1416
Зарегистрирован: 09.06.2022
Образование: высшее гуманитарное
 Re: Язык Словесный и Математический

Сообщение Правдоискатель »



Отправлено спустя 7 минут 46 секунд:


Отправлено спустя 1 минуту 21 секунду:
Зри в КОРЕНЬ, чтобы БЫТЬ, а не КАЗАТЬСЯ!
Аватара пользователя
Автор темы
Правдоискатель
по чётным - академик
по чётным - академик
Всего сообщений: 1416
Зарегистрирован: 09.06.2022
Образование: высшее гуманитарное
 Re: Язык Словесный и Математический

Сообщение Правдоискатель »

Сомсиков А.И. Исторические проблемы математики. Число и арифметическое действие (фрагмент)


Определение чисел

Всякий раз, когда встречается ситуация, описание которой, в силу ее сложности,
затруднительно и требует многих слов, описание заменяется специальным термином
(наименованием ситуации) с целью достижения краткости и связанной с ней ясности во
всякого рода суждениях об этой ситуации, в которых она должна фигурировать в качестве
члена предложения.


Определения математики

Здесь все обстоит очень просто.

В математике нет прямого определения чисел. Ни предварительного, требующего уточнений, как у Евклида, ни окончательного. Вообще никакого.

Есть утверждения о “многовековом опыте абстрагирования и обобщений”
человечества, т.е. не математиков. Уживающиеся с противоположными утверждениями о
неспособности к абстрагированию “дикарей”, т.е. того же человечества на большей части его
истории.
Изредка об этом говорится прямо. Например:

“Понятие о натуральном числе является одним из простейших понятий. Его можно
пояснить лишь предметным показом.
Примечание: Евклид (III в до н.э.), определял число (натуральное) как "множество,
составленное из единиц"; такого рода определения можно найти и во многих
нынешних учебниках. Но слово "множество (или "собрание" или "совокупность" и т.п.)
отнюдь не понятнее слова "число"” [ 1 ].

Здесь термин “элементарная математика” использован для введения в заблуждение.
Чтобы изучающий постеснялся задавать какие-либо вопросы. То есть для его отключения,
поскольку здесь все ведь “элементарно”. Из-за такого намеренного отключения вопрос этот
до сих пор остается все еще не решенным. Хотя освоивший “элементарную” математику
считается имеющим не элементарное, а уже “среднее” образование. Но и при “высшем”
образовании к этому больше не возвращаются. Такой вопрос считаются вполне изученным
еще на “элементарном” уровне. Или предметом излишних философских умствований.
Это первый универсальный способ сокрытия незнания: то, что не удается
определить, следует называть очевидным или элементарным.
В математике “знание чисел” сводится к знанию правил обращения с ними.
Обеспечивающих выполнение “арифметических действий”. Смысл которых тоже может
быть не известен.
Вот сообщение того же источника:

“Понятие о том, что такое сложение, возникает из таких простых фактов, что оно
не нуждается в определении и не может быть определено формально.
Примечание: Часто даются "определения" вроде таких: "сложение есть действие,
посредством которого несколько чисел соединяются в одно", или "действие,
посредством которого находится, сколько единиц содержится в нескольких числах
вместе". Но тот, кто не знал бы, что значит "сложить", не знал бы и что такое
"соединить числа", так что все подобные "определения" сводятся лишь к замене одних
слов другими”.

Взамен объяснения смысла сложения дается утверждение, что все это “простые
факты”. Хотя с вопроса именно о таком “простом факте” и начинается с подачи Лейбница
критика Канта [ 2 ]. Вылившаяся в толстый том философских рассуждений. Это как раз по
Канту слагаемые “соединяются в одно число” (сумму), как бы сливаясь или “синтезируясь” в
нем, подобно атомам в составе молекулы. Такая поверхностная аналогия не дает реального
понимания смысла данного действия.
Приведенная цитата в части отсутствия определения, конечно, правильна.
Но утверждение, что действие сложения “не может быть определено
формально” никак отсюда не вытекает и остается всего лишь мнением автора. Чем-то вроде
“неизвестно, следовательно, невозможно”. Простая логическая ошибка.

Другие цитаты

Можно привести много цитат, характеризующих нынешнее понимание математики.
Автор, имеющий неосторожность озаглавить свое сочинение “Что такое число?”,
вынужден сразу же уходить от прямого ответа:

“Когда школьник впервые знакомится с математикой, ему говорят, что это – наука о
числах и геометрических фигурах. Вузовский курс математики обычно начинается с
аналитической геометрии, основная цель которой – выразить геометрические
понятия на языке чисел. Таким образом, получается, что числа – это единственный
предмет изучения в математике.
Правда, если вы откроете современный научный журнал и попробуете прочитать
какую-нибудь статью по математике, то вполне вероятно, что вы не встретите в
этой статье ни одного числа “в чистом виде”. Вместо них речь идет о множествах,
функциях, операторах, категориях, мотивах и т.д. Однако, во-первых, почти все эти
понятия так или иначе опираются на понятие числа, а, во-вторых, конечный
результат любой математической теории, как правило, выражается на языке чисел.
Поэтому мне кажется небесполезным обсудить со студентами-математиками
вопрос, поставленный в заголовке этой книги.
Разумеется, одно только описание исторического развития понятия числа или
обсуждение его философского смысла требует много времени и места. Об этом уже
написано немало толстых книг. Моя цель более проста и конкретна – показать, какой
смысл придается понятию числа в современной математике, рассказать о задачах,
которые возникают в связи с разным пониманием чисел, и о том, как эти задачи
решаются. Конечно, в каждом случае я смогу лишь кратко описать самые начала
соответствующей теории. Для тех читателей, которые захотят разобраться в ней
подробнее, я указываю подходящую литературу” [ 3 ].

Здесь нет ответа на главный вопрос: что же такое число? На деле такой вопрос даже
не ставится.
Изящным маневром само “понятие числа” сразу же заменяется его “историческим
развитием” (что означает также замену самой математики какой-то ее историей). Или же
упоминается “обсуждение его философского смысла” (что тоже означает замену математики
философией, проще говоря, неопределенными рассуждениями на тему о числах). И все это
вводится вовсе не в основной части текста, а всего лишь к нему предисловии. Как если бы
этот вопрос был абсолютно несущественным и второстепенным. Чуть ли не в разделе “да,
чуть не забыли”.
И при этом нарочито небрежно, походя, одной фразой. Поскольку, видите ли,
требует много времени и места. Так много, что в книге, должно быть, просто не уместилось.
Хотя и сообщается, что об этом уже написано много других книг. Которые сам автор, надо
думать, уже прочел. Ну и что он там вычитал?
Где требуемое определение этого основного понятия математики? Являющегося
также исходным или первичным.
Ответом служит глубокомысленное молчание.
А вот другое сообщение, тоже увиливающее от прямого ответа в
область исторического развития понятия числа. Предназначенное для учителей. Это,
вероятно, максимум того, что можно вообще узнать в институте:

“ § 2. Что такое число?
В XYIII веке математики считали понятие числа совершенно простым и ясным.
“Ничто не является более простым и более известным людям, - указывал Боссю, - чем
идея числа”.
Они полагали возможным дать о б щ е е определение понятия числа, способное быть д
е й с т в е н н ы м началом логического развития арифметики л ю б ы х ч и с е л.
“Надлежит прежде всего о числах иметь ясное понятие”, - писал Эйлер и тут же
добавлял, что т о л ь к о п о н и м а н и е п р и р о д ы ч и с е л г а р а н т и р у е т п о н
и м а н и е в о з м о ж н ы х д е й с т в и й н а д н и м и и о с т а л ь н ы х и х с в о й с т в.
“… всякий способ изображения чисел, - пишет Эйлер, - требует к арифметическим
действиям особых правил, которые надлежит производить от свойств оных чисел,
кои употребляются”.
Учебники арифметики этого времени часто начинались категорическим
утверждением: изучить арифметику может только тот, кто знает, что есть число.
Такое утверждение гармонически сочеталось с трактовкой математики как науки о
величинах.
В первой половине XYIII века авторы руководств по арифметике, статей в
энциклопедиях и т.п. обычно определяли понятие числа по Евклиду: число есть
множество единиц. Так по существу трактовал понятие числа Л. Магницкий.
Определение Евклида сохраняется и во второй половине XYIII века, правда, как увидим,
не в прежнем его толковании как общего понятия числа. Еще до XYIII века применение
определения Евклида встретилось с рядом трудностей. Именно, опираясь на него,
нужно было признать, что 0 и 1 не являются числами: нуль есть только знак для
“ничто”; единица означает только одну вещь, она – основание, “причина” числа, но не
число. Известно, что такая трактовка понятия единицы была развита в древней
Греции. Потом она перешла к математикам Среднего востока и Западной Европы и
имела последователей еще в XYII веке. Решающим, однако, было то, что определение
Евклида по видимости мирилось с существованием дробных чисел, но не охватывало
числа иррациональные. Этот факт учитывал Лейбниц и некоторые другие
математики XYII века. “Понятие числа во всем объеме, - писал Лейбниц, -
охватывает числа целые, дробные, иррациональные и трансцендентные”. Все
возрастающая роль иррациональных чисел в механике, математическом анализе и
алгебре способствовала тому, что во второй половине XYIII века чаще появляются и,
наконец, завоевывает господствующее положение иное общее определение числа,
выдвинутое Ньютоном: “число есть отношение одной величины к другой, того же
рода, принятой за единицу”. Это определение охватывало как равноправные
положительные целые, дробные, и иррациональные числа. Именно в этом
обстоятельстве Даламбер и Котельников усматривали превосходство определения
Ньютона. Единица становилась полноправным числом: измеряемая величина могла
оказаться равной единице меры. Нуль, однако, по-прежнему выступал как знак
“ничто”. Правда, в алгебре наметилось иное толкование нуля, как “середины” между
положительными и отрицательными величинами, но в арифметику оно не проникло.
Взгляд на нуль, как на число, стал завоевывать всеобщее признание с конца XYIII века в
связи с разработкой вопросов обоснования арифметических действий. И это
естественно, если учесть господствующую в это время чисто количественную
трактовку понятия числа. На определение Ньютона опирались Эйлер, Лагранж и
Лаплас. Его придерживались С. Котельников, А. Барсов и многие другие.
Во второй половине XYIII века большинство математиков рассматривало ньютоново
определение понятия числа не только как целесообразное, но и как предельно широкое,
охватывающее все возможные его виды. Определение Евклида начинает правильно
трактоваться только как определение целого числа” [ 4 ].

Тематика книги отнюдь не случайно обрывается началом XIX века. Ее идея, видимо,
такова. Да, действительно, понятие числа вызывало какие-то затруднения. Но это было
довольно давно. Еще в эпоху античности или на рубеже XYII - XYIII веков. В крайнем
случае, XIX. Но уж никак не в ХХ веке или того позже. Эвклид предварительно определил,
Ньютон существенно уточнил. После чего все стало если и не совсем, то почти хорошо. А в
общем числа это все: и целые, и дробные, и относительные, и рациональные, и
иррациональные, и комплексные, такая вот сборная солянка. И нет никакой проблемы.
Нужно только все это хорошенько выучить. Чтобы затем применять.
Чего стоит, однако, ньютоновское “уточнение”, когда одно неизвестное (число)
определяется через два других неизвестных (величину и отношение).
Они-то что значат?
Ведь их не иначе как через число придется определять, совершая логический круг.
А как это излагается в начальной школе, где и закладывается фундамент образования?
Цитата:

“I. НАТУРАЛЬНЫЕ ЧИСЛА.
§ 1. Счет как основа арифметики. Натуральный ряд чисел.
Арифметика – это наука, изучающая числа и действия над ними. Счет является
основой арифметики.
Прежде чем научиться вычислять, надо научиться считать и уметь записывать
числа. Для счета люди пользуются названиями чисел и особыми знаками для краткого
их обозначения.
Знаки для изображения чисел называются цифрами. Мы пользуемся десятью
цифрами: 0, 1, 2, 3, 4, 5, 6, 7, 8, и 9. Эти цифры называются а р а б с к и м и.
Для обозначения отсутствия предметов употребляется число нуль, которое
изображается цифрой 0 (рис. 1 – ветка с птичками и надписью “На ветке сидело 5
птиц” и “Птицы улетели. На ветке осталось 0 птиц”).
Все числа: 1, 2, 3, 4, …, 9, 10, 11, …, 16, 17, 18 и так далее без конца
называют натуральным рядом чисел, а сами числа – натуральными числами. В
натуральном ряду каждое число, начиная с 2, на единицу больше предыдущего.
Натуральные числа являются ц е л ы м и числами. К целым числам относится и число
нуль, но оно не принадлежит к натуральным числам.
Не следует смешивать понятия “числа” и “цифры”. Различных чисел можно
написать сколько угодно, а цифр – только десять. Любое натуральное число мы
записываем с помощью этих десяти цифр.
Слово “цифра” в обычной речи часто употребляется в том же смысле, в каком в
арифметике употребляется термин “число”; например говорят о цифрах
семилетнего плана.
Каждое из первых девяти натуральных чисел 1, 2, 3, …, 9 записывается одной цифрой,
эти числа называются однозначными числами. Число нуль относится к однозначным
числам. Все остальные натуральные числа записываются с помощью нескольких цифр
и называются многозначными числами.
По количеству входящих в них цифр многозначные числа делятся на двузначные,
трехзначные, четырехзначные и т.д.
П р и м е р ы: 22, 35 и 47 – двузначные числа; 305; 666 и 700 – трехзначные числа; 506
066 – шестизначное число” [ 5 ].

Где здесь определение чисел? – Его просто нет. Ни в каком, хотя бы сколько-нибудь
приблизительном или описательном виде.
Как можно “изучать числа”, не зная, что это такое?
Зато в одном этом параграфе вводится сразу целый букет производных терминов:
натуральные числа, счет, натуральный ряд чисел, действия над числами, запись чисел,
особые знаки, краткое обозначение чисел, знаки для изображения чисел, цифры,
арабские цифры, число нуль, не принадлежащее к натуральным числам и поясняемое
метафорой “птицы улетели”, число, записываемое с помощью десяти цифр, цифра,
понимаемая как число, число на единицу больше предыдущего, целые числа, целое число
нуль, однозначные и многозначные числа, числа в виде нескольких цифр, двузначные,
трехзначные и шестизначные числа. И все это практически без пояснений.
Здесь обозначен второй универсальный способ сокрытия незнания: если определение
отсутствует, число неопределяемых понятий следует увеличить. Чтобы так сказать
“проскочить за дымом”.
Это и есть то, что называется школьной подготовкой, определяющей понимание чисел,
к которому в последующих курсах уже больше не возвращаются.

Из этого, к сожалению, не вытекает, что математики знают, что такое число.

https://mirovid.profiforum.ru/t1535-topic#3464
Зри в КОРЕНЬ, чтобы БЫТЬ, а не КАЗАТЬСЯ!
Аватара пользователя
Таланов
по чётным - академик
по чётным - академик
Всего сообщений: 1145
Зарегистрирован: 29.08.2013
Образование: высшее естественно-научное
Профессия: инженер
Откуда: Дивногорск
Возраст: 64
 Re: Язык Словесный и Математический

Сообщение Таланов »

Правдоискатель: 15 ноя 2022, 02:12 Где здесь определение чисел? – Его просто нет. Ни в каком, хотя бы сколько-нибудь
приблизительном или описательном виде.
А чем вам не нравится определение числа в википедии?
Число́ — одно из основных понятий математики, используемое для количественной характеристики, сравнения, нумерации объектов и их частей.
Аватара пользователя
Автор темы
Правдоискатель
по чётным - академик
по чётным - академик
Всего сообщений: 1416
Зарегистрирован: 09.06.2022
Образование: высшее гуманитарное
 Re: Язык Словесный и Математический

Сообщение Правдоискатель »

Таланов: 18 ноя 2022, 02:09 А чем вам не нравится определение числа в википедии?
А вам нравится определение Пифагора:
В начале было Число, Миром правят Числа, всё - из Числа, которое имеет Душу?
Зри в КОРЕНЬ, чтобы БЫТЬ, а не КАЗАТЬСЯ!
Аватара пользователя
Таланов
по чётным - академик
по чётным - академик
Всего сообщений: 1145
Зарегистрирован: 29.08.2013
Образование: высшее естественно-научное
Профессия: инженер
Откуда: Дивногорск
Возраст: 64
 Re: Язык Словесный и Математический

Сообщение Таланов »

Правдоискатель: 18 ноя 2022, 02:42 А вам нравится определение Пифагора
Это определение не математическое, а философское. К тому же я не сторонник мистики и нумерологии.
Аватара пользователя
Автор темы
Правдоискатель
по чётным - академик
по чётным - академик
Всего сообщений: 1416
Зарегистрирован: 09.06.2022
Образование: высшее гуманитарное
 Re: Язык Словесный и Математический. Природный смысл в Мировоззренческом контексте.

Сообщение Правдоискатель »

Таланов: 18 ноя 2022, 04:25 Это определение не математическое, а философское. К тому же я не сторонник мистики и нумерологии.
Контекст Темы - МИРОВОЗЗРЕНЧЕСКИЙ и Природный.
"Природа - не дура, а Бог - не калека!"

Сторонники каких взглядов имеют исключительное право на Правильное (т.н. истинное) понимание сути Жизни?
Зри в КОРЕНЬ, чтобы БЫТЬ, а не КАЗАТЬСЯ!
Аватара пользователя
Автор темы
Правдоискатель
по чётным - академик
по чётным - академик
Всего сообщений: 1416
Зарегистрирован: 09.06.2022
Образование: высшее гуманитарное
 Re: Язык Словесный и Математический. Природный смысл в Мировоззренческом контексте.

Сообщение Правдоискатель »

Язык Творенья и Познанья по сути совпадать должны!

В начале был Язык у Бога,
Устроенный порядком строгим,
И Слово первое – О, УМ!

В устремлении к Духовной мощности
Ничего в познании не светит нам пока,
Не постигнем мы на уровне ВСЕОБЩНОСТИ
Суть МИРОВОЗЗРЕНЧЕСКУЮ
ЯЗЫКА!

Лишь тогда прозреем в Духе мы практически,
Когда сможем ПРАВДУ Сокровенную понять:
ЯЗЫКИ – Словесный и Математический
Обязательно должны друг друга дополнять.

В пробуждении Духовных – Слуха, Зрения
Постулаты Сокровенные нужны:
ЯЗЫКИ ПОЗНАНЬЯ и ТВОРЕНИЯ
Быть Едины в Сущности должны!

https://mirovid.profiforum.ru/t1615-topic#3679
Язык Словесный и Математический. Природный смысл в Мировоззренческом контексте. - Космос 006.jpg
Зри в КОРЕНЬ, чтобы БЫТЬ, а не КАЗАТЬСЯ!
Аватара пользователя
Автор темы
Правдоискатель
по чётным - академик
по чётным - академик
Всего сообщений: 1416
Зарегистрирован: 09.06.2022
Образование: высшее гуманитарное
 Re: Язык Словесный и Математический. Природный смысл в Мировоззренческом контексте.

Сообщение Правдоискатель »

Количество в куче и Качество в порядке Времени
Язык Словесный и Математический. Природный смысл в Мировоззренческом контексте. - Куча чисел.jpg
Аристотель определил математику
как «науку о количестве»
------------------------------------------
В русском языке Числа бывают
Количественными и Порядковыми
------------------------------------------


Прости, о, ВРЕМЕНИ ВЕЛИ-ЧЕСТВО!
Что зрит в Тебе антропное ребя-чество
Математическую Кучу голого КОЛИ-ЧЕСТВА.

Лишь зрелость Духа, одолев людское я-чество,
В ПОРЯДКЕ ВРЕМЕНИ узреть способно КА-ЧЕСТВО!
Зри в КОРЕНЬ, чтобы БЫТЬ, а не КАЗАТЬСЯ!
Аватара пользователя
Владимир Юрьевич
старший писарь
старший писарь
Всего сообщений: 23
Зарегистрирован: 05.10.2022
Образование: высшее техническое
Профессия: метафизика
 Re: Язык Словесный и Математический. Природный смысл в Мировоззренческом контексте.

Сообщение Владимир Юрьевич »

Правдоискатель: 11 окт 2022, 02:13 Какими и сколькими вариантами можно словесно озвучить, используя отечественный лексикон, следующий знаковый ряд:
1,2,3,4,5,6,7
Лучше ОГЛАСИТЬ, а не озвучить.
Аватара пользователя
Автор темы
Правдоискатель
по чётным - академик
по чётным - академик
Всего сообщений: 1416
Зарегистрирован: 09.06.2022
Образование: высшее гуманитарное
 Re: Язык Словесный и Математический. Природный смысл в Мировоззренческом контексте.

Сообщение Правдоискатель »

пожалуй, действительно - лучше... :)
Зри в КОРЕНЬ, чтобы БЫТЬ, а не КАЗАТЬСЯ!
Аватара пользователя
Автор темы
Правдоискатель
по чётным - академик
по чётным - академик
Всего сообщений: 1416
Зарегистрирован: 09.06.2022
Образование: высшее гуманитарное
 Re: Язык Словесный и Математический. Природный смысл в Мировоззренческом контексте.

Сообщение Правдоискатель »

Россия есть Европа минус Русь!
(Россия = Европа - Русь)
Язык Словесный и Математический. Природный смысл в Мировоззренческом контексте. - thumb.php - копия.jpg
Язык Словесный и Математический. Природный смысл в Мировоззренческом контексте. - thumb.php - копия.jpg (7.97 КБ) 4327 просмотров
Процесс формирования России
Представить в виде формулы берусь,
Призвав математическую силу:
Россия есть Европа минус Русь!

https://mirovid.profiforum.ru/t1684-topic#3835
Зри в КОРЕНЬ, чтобы БЫТЬ, а не КАЗАТЬСЯ!
Аватара пользователя
Автор темы
Правдоискатель
по чётным - академик
по чётным - академик
Всего сообщений: 1416
Зарегистрирован: 09.06.2022
Образование: высшее гуманитарное
 Re: Язык Словесный и Математический. Природный смысл в Мировоззренческом контексте.

Сообщение Правдоискатель »

ИноПланетянин 20 + 20 = 40? А м.б. = 20? А м.б. = 10?
Язык Словесный и Математический. Природный смысл в Мировоззренческом контексте. - 1553 - копия.jpg
Язык Словесный и Математический. Природный смысл в Мировоззренческом контексте. - 1553 - копия.jpg (13.48 КБ) 4284 просмотра
МАТЕМАТИКА — наука,
в которой изучаются пространственные формы
и КОЛИЧЕСТВЕННЫЕ отношения.
Большой Энциклопедический словарь

20 + 20 = 40; 20 + 20 = 20; 20 + 20 = 10;

Что стоит за этими математическими соотношениями?
Что можно сказать, глядя на них?
Какое отражает истину?
Или все противоречат ей?

«20 валенок + 20 валенок = 40 валенок (валенки всегда валяют на одну ногу)
Справедливо? Да.

20 валенок + 20 валенок = 20 пар валенок; (20 пар обуви для 20 человек) Правильно? Да.

20 валенок + 20 галош = 10 комплектов обуви для 10 человек. Очевидно? Да.

Эти расчеты делает любой кладовщик, комплектовщик как само собой разумеющееся.
А СОВРЕМЕННАЯ математика этого не понимает, и физика тоже…

Любое число должно иметь КАЧЕСТВЕННУЮ определенность, т.е. обладать МЕРОЙ и тогда
20 + 20 = и 40;
20 + 20 = и 20;
20 + 20 = и 10.

https://mirovid.profiforum.ru/t1686-topic#3838
Зри в КОРЕНЬ, чтобы БЫТЬ, а не КАЗАТЬСЯ!
Аватара пользователя
Автор темы
Правдоискатель
по чётным - академик
по чётным - академик
Всего сообщений: 1416
Зарегистрирован: 09.06.2022
Образование: высшее гуманитарное
 Re: Язык Словесный и Математический. Природный смысл в Мировоззренческом контексте.

Сообщение Правдоискатель »

ТРИ Духовно-Плотских измеренья
Язык Словесный и Математический. Природный смысл в Мировоззренческом контексте. - ДУМА.jpg

Есть СИСТЕМА Количественного СЧИСЛЕНИЯ
И СИСТЕМА Качественного ИЗМЕРЕНИЯ.
ЧИСЛА бывают Счётные – т.е. КОЛИЧЕСТВЕННЫЕ
(один, два, три…
Современная математика занимается
голым счислением голого –
т.е. БЕЗкачественного – количества)
и ПОРЯДКОВЫЕ – т.е. КАЧЕСТВЕННЫЕ
(первый, второй, третий…
Ими занимается Нумерология)
(Хроника Акаши)

В Реальном Мире ЕСТЕСТВЕННОГО Бытия,
УМно устроенногоТворцом,
Имеется только ТРИ
Пространственно-Временных Измерения
И Три соответствующих Системы Координат.

В Виртуальном Мире
ИСКУССТВЕННОГО РАЗумного людского воображения
Может быть сколько угодно
(в т.ч. дурная бесконечность) БЕЗумных Измерений
в системе соответствующих Координат.
(Хроника Акаши)

Высь, ширь, глубь. Лишь три координаты.
Мимо них где путь? Засов закрыт.
С Пифагором слушай сфер сонаты,
Атомам дли счет, как Демокрит.
(В. Брюсов)
___________________



«Высь, ширь, глубь - лишь три координаты»,
Чтобы к тайне ТРЁХ, был ключ открыт,
«С Пифагором слушай Сфер сонаты»,
Атомы считай, как Демокрит.

«Голых чисел» путь приводит к Риму.
В прошлом РАЗум вёл всегда туда,
В новом веке: Лобачевский, Риман –
Та же Матерьяльная узда.

В ТРЁХ Духовно-Плотских измереньях
Пребывают наши БОГИ, ПРЕДКИ – те,
Кто скорбит о нашем скудном зреньи
И стремленьи к роковой черте.

Стыдно ИМ, что Правду мы забыли,
Что не чувствуем Родной Природы боль,
Что злонравно в Мире проявили
Мы свободу наших Душ и Воль.

https://mirovid.profiforum.ru/t1756-topic#3972
Зри в КОРЕНЬ, чтобы БЫТЬ, а не КАЗАТЬСЯ!
Аватара пользователя
Автор темы
Правдоискатель
по чётным - академик
по чётным - академик
Всего сообщений: 1416
Зарегистрирован: 09.06.2022
Образование: высшее гуманитарное
 Re: Язык Словесный и Математический. Природный смысл в Мировоззренческом контексте.

Сообщение Правдоискатель »

У Творца священных Чисел много?
Язык Словесный и Математический. Природный смысл в Мировоззренческом контексте. - Циркуль и угольнык - копия.jpg
Все мнят и говорят – Бог любит ТРОИЦУ!
А ДВОИЦУ не любит с ЧЕТВЕРИЦЕЙ?
А, может быть, Творец расстроится,
Внимая то, что нам о Боге мнится?

Неужто только к ТРОЙКЕ сводится наш мир единый?
И ежели духовным взором глянуть зорко,
Как быть с Гармонией и «Золотою серединой» -
За красотой скрывается ПЯТЁРКА?

А всем известная Пятиконечная звезда
В себе несёт "сеченье золотое"?
А СЕМИсвечник в храмах не всегда
Символизирует для всей Земли святое?

ВОСЬМИконечная звезда на образах
Звездою Богородицы зовётся?
ДЕВЯТИсвечник отражается в глазах,
Когда порою благодать на души льётся?

Бог научил Природу Правильно считать и измерять -
У размноженья клеток - ВОСЬМЕричная система,
Есть МЕРЫ разные – различным формам живости под стать,
И все живые существа, конечно, - в теме.

Так значит у Всевышнего Творца
Не только Троица одна лишь свЯта!
И для строительства в Душе Дворца
Считать учиться у Божественной Природы надо!

https://mirovid.profiforum.ru/t1768-topic#3996
Зри в КОРЕНЬ, чтобы БЫТЬ, а не КАЗАТЬСЯ!
Аватара пользователя
Автор темы
Правдоискатель
по чётным - академик
по чётным - академик
Всего сообщений: 1416
Зарегистрирован: 09.06.2022
Образование: высшее гуманитарное
 Re: Язык Словесный и Математический. Природный смысл в Мировоззренческом контексте.

Сообщение Правдоискатель »

МАТеМАТика – МАТь МАТерей стала МАЧЕХОЙ
Язык Словесный и Математический. Природный смысл в Мировоззренческом контексте. - дважды два - копия.jpg
Математики, как это ни печально,
«отвернулись от бога»,
и всемогущий геометр не захотел открывать им,
какую из геометрий он избрал за основу при сотворении мира.
(Клайн М. Математика. Поиск истины)

Бог создал натуральные числа, все остальное - дело рук человеческих.
(Леопольд Кронекер)

Число – основное понятие математики…
МНОГОЧИСЛЕННЫЕ ПОПЫТКИ ОПРЕДЕЛИТЬ «ЧИСЛО»
К ОСОБОМУ УСПЕХУ НЕ ПРИВОДИЛИ.
(Д. Мичи, Р. Джонстон. Компьютер творец, Мир, М.: 1987, с. 10).

Царство количества и знамения времени
Рене Генон

Математика – это наука, которая изучает величины,
КОЛИЧЕСТВЕННЫЕ отношения и пространственные формы.

Число – одно из основных понятий математики,
используемое для КОЛИЧЕСТВЕННОЙ характеристики,
сравнения, нумерации объектов и их частей.
(Словари)
-----------------------------------------------------------------


МАТеМАТика правит БЕЗДУШНЫМ Количеством,
Но когда-то являлась ЦАРИЦЕЙ НАУК,
И ТВОРЦА ЯЗЫКОМ в Горнем Мире – ЯЗЫЧЕСТВОМ!
А теперь помогает убить всё вокруг!

Помогла рассчитать захламление Космоса,
Термоядерных бомб смертоносный заряд,
Сделать мир виртуально искусственным
с бонусом
В виде слежки за всем и за каждым подряд.

В прошлом МАТь МАТерей стала попросту МАЧЕХОЙ,
Что не ведает в Числах Духовный смысл. Но!
Бездуховной науке без Бога – без КАЧЕСТВА
Места нет в Жизни Вечной и в Жизни Земной!

https://mirovid.profiforum.ru/t1877-topic#4177
Зри в КОРЕНЬ, чтобы БЫТЬ, а не КАЗАТЬСЯ!
Ответить Пред. темаСлед. тема
Для отправки ответа, комментария или отзыва вам необходимо авторизоваться
  • Похожие темы
    Ответы
    Просмотры
    Последнее сообщение